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Abstract: Hyperviscosity has proven to be an effective artificial viscosity in
several hydrodynamic codes [1]. We adapt hyperviscosity for the high-order fi-
nite elemenent curvilinear hydrodynamics code BLAST [2]. The FEM formula-
tion of the operators used in hyperviscosity are shown to converge under mesh
refinement. Hyperviscosity can reduce wall heating when used as a limiter and
vanishes on smooth problems.

Hyperviscosity

• In order to effectively represent shocks (discontinuities) with the Euler
equations it is necessary to use artificial viscosity

• Hyperviscosity is a form of artificial viscosity that uses higher-order gra-
dients to “focus” viscosity on the shock region

• Hypervisocsity modifies the viscosity tensor, Q, in the momentum and
energy equations of Euler’s equations:

Momentum Conservation: ρ
Dv

dt
= −∇p + ∇ · Q

Energy Conservation: ρ
De

dt
= −p (∇ · v) + Q : ∇v

• Hyperviscosity uses the s field, which is the Frobenius Norm of the sym-
metrized velocity gradient:

ǫ = 1

2
(∇v + v∇)

s =
√

(ǫ : ǫ)

• The bulk and shear viscosity terms both have a coefficient that depends
on the Laplacian of the s field,:

µ∗ = Cµρ|∇2(sL4)|

β∗ = Cβρ|∇2(∇ · u)|L4H(∇ · u)

The overbar represents a smoothing operation and L is a grid-dependent
length scale.

BLAST

The main features of the BLAST hydro code are [2]:

• Supports 2D (triangles, quads) and 3D (tets, hexes) unstructured curvilin-
ear meshes.

• High order field representations.

• Exact discrete energy conservation by construction.

• Reduces to classical staggered-grid hydro under simplifying assumptions.

Laplacian Operator in Discrete Finite Element Space

In the finite element method operators are written in a weak-variational form.
The Laplacian of the s-field is:

x = ∆s →
∫

xφi =
∫

∆sφi

Using integration by parts the right hand side becomes:

∫

∆sφi = −
∫

Ω
∇s · ∇φi +

∫

∂Ω
∇s · nφi

After replacing s and x with a trial function φj and inserting some FEM termi-
nology the system system looks like:

Mα = Sβ

Where M and S are the mass and stiffness matrices repsectively. Multiple
Laplacian operations can be obtained by taking higher powers ofM−1S.

Discontinuous Velocity Field for Q6 with two mesh refines

Convergence of Discrete Laplacian

• The s field, ∆s and ∆2s converge to the analytic solution under mesh
refinement on structured and unstructured grids

• The same convergence rates are obtained when the Lumped Mass Matrix
is used

• For convergence, the order of the basis function must be greater than or
equal to the number of gradient operations: Qk for v with ∇nv where
k >= n .
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L2 Error Convergence for S Field on Square Mesh for v = cos(pi*x)
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L2 Error Convergence for Laplacian of s Field on Square Mesh for v = cos(pi*x)
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L2 Error Convergence for second Laplacian of s Field on Square Mesh for v = cos(pi*x)

Q4
Fit, m = -0.14
Q5
Fit, m = 1.46
Q6
Fit, m = 1.79
Q7
Fit, m = 3.75

2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
log10(h)

8

6

4

2

0

2

lo
g
1
0
(||~
v−

~ v
h
|| 2

)

L2 Error Convergence for Laplacian of s Field on Unstructured Mesh for v = cos(pi*x)
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Hyperviscosity as a Limiter in Blast

Artificial viscosity methods based on a single spatial gradient can give toomuch
viscosity in non-schock regions. Hyperviscosity will yield much smaller viscos-
ity in these regions, making it ideal for use as a limiter:

µ = min(µ, µhyper)
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L2 Norm for Q2-Q1  Taylor Green-Vortex with Single Laplacian and  Various Viscosity Parameters 
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Velocity field for the Taylor-Green problem with hyperviscosity limiter at t = 0.75s and

convergence plot for different viscosity parameters
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Comparison of velocity vs. distance and density vs. distance for Sod problem at t = 0.2 with the

Q2-Q1 method
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Density and viscosity fields for the Noh problem at t = 0.6 with the Q2-Q1 method hyperviscosity

limiter and a comparison of density fields for the Noh problem

Conclusion

The operations required to form the hyperviscosity coefficients can be per-
formed in the higher-order finite element space. When tuned correctly, hyper-
viscosity effectively reduces viscous heating in non-shock regions of the prob-
lem and does not overdamp shocks.
[1] A. W. Cook, W. H. Cabot, Hyperviscosity for shock-turbulence interactions, Journal of Compu-

tational Physics, Volume 203, Issue 2.

[2] V. A. Dobrev, Tz. V. Kolev, and R. N. Rieben. High order curvilinear finite element methods for

Lagrangian hydrodynamics. SIAM J. Sci. Comp., 2012. to appear, also available as LLNL technical

report LLNL-JRNL-516394.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-570172


